Lecture 10 : Trigonometric Substitution

To solve integrals containing the following expressions;

$$
\sqrt{a^{2}-x^{2}} \quad \sqrt{x^{2}+a^{2}} \quad \sqrt{x^{2}-a^{2}},
$$

it is sometimes useful to make the following substitutions:

$$
\begin{array}{crlcc}
\text { Expression } & \text { Substitution } & \text { Identity } \\
\sqrt{a^{2}-x^{2}} & x=a \sin \theta,-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2} \quad \text { or } \quad \theta=\sin ^{-1} \frac{x}{a} & 1-\sin ^{2} \theta=\cos ^{2} \theta \\
\sqrt{a^{2}+x^{2}} & x=a \tan \theta,-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2} \quad \text { or } \quad \theta=\tan ^{-1} \frac{x}{a} & 1+\tan ^{2} \theta=\sec ^{2} \theta \\
\sqrt{x^{2}-a^{2}} & x=a \sec \theta, \quad 0 \leq \theta<\frac{\pi}{2} \quad \text { or } \pi \leq \theta<\frac{3 \pi}{2} \quad \text { or } \theta=\sec ^{-1} \frac{x}{a} & \sec ^{2} \theta-1=\tan ^{2} \theta
\end{array}
$$

Note The calculations here are much easier if you use the substitution in reverse: $x=a \sin \theta$ as opposed to $\theta=\sin ^{-1} \frac{x}{a}$.

Integrals involving $\sqrt{a^{2}-x^{2}}$

We make the substitution $x=a \sin \theta, \quad-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}, d x=a \cos \theta d \theta$,

$$
\sqrt{a^{2}-x^{2}}=\sqrt{a^{2}-a^{2} \sin ^{2} \theta}=a|\cos \theta|=a \cos \theta\left(\text { since }-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2} \text { by choice. }\right)
$$

Example

$$
\int \frac{x^{3}}{\sqrt{4-x^{2}}} d x
$$

Example

$$
\int \frac{d x}{x^{2} \sqrt{9-x^{2}}}
$$

You can use this method to derive what you already know

$$
\int \frac{1}{\sqrt{a^{2}-x^{2}}} d x=\sin ^{-1} \frac{x}{a}+C
$$

Integrals involving $\sqrt{x^{2}+a^{2}}$

We make the substitution $x=a \tan \theta, \quad-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}, d x=a \sec ^{2} \theta d \theta$,

$$
\sqrt{x^{2}+a^{2}}=\sqrt{a^{2} \tan ^{2} \theta+a^{2}}=a|\sec \theta|=a \sec \theta\left(\text { since }-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2} \text { by choice. }\right)
$$

Example

$$
\int \frac{d x}{\sqrt{x^{2}+4}}
$$

You can also use this substitution to get the familiar

$$
\int \frac{1}{x^{2}+a^{2}} d x=\frac{1}{a} \tan ^{-1} \frac{x}{a}+C .
$$

Completing The Square

Sometimes we can convert an integral to a form where trigonometric substitution can be applied by completing the square.

Example Evaluate

$$
\int \frac{d x}{\sqrt{x^{2}-4 x+8}}
$$

Integrals involving $\sqrt{x^{2}-a^{2}}$
We make the substitution $x=a \sec \theta, \quad 0 \leq \theta<\frac{\pi}{2} \quad$ or $\pi \leq \theta<\frac{3 \pi}{2}, d x=a \sec \theta \tan \theta d \theta$, This amounts to saying $\theta=\sec ^{-1} \frac{x}{a}$,
$\sqrt{x^{2}-a^{2}}=\sqrt{a^{2} \sec ^{2} \theta-a^{2}}=a|\tan \theta|=a \tan \theta\left(\right.$ since $0 \leq \theta<\frac{\pi}{2}$ or $\pi \leq \theta<\frac{3 \pi}{2}$ by choice. $)$
Example Evaluate

$$
\int \frac{1}{x^{2} \sqrt{x^{2}-25}} d x
$$

Example Evaluate

$$
\int_{4}^{6} \frac{1}{\sqrt{x^{2}-6 x+8}} d x
$$

You can also use this substitution to get

$$
\int \frac{1}{x \sqrt{x^{2}-a^{2}}} d x=\frac{1}{a} \sec ^{-1} \frac{x}{a}+C .
$$

